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NUNERICAL SIMJLATION OF FRACTURE

by L. G. Margolin and T. F. AdamB

Earth and Space Science Dtvi8ion
Los Alamoo National Laboratory

Lao Alamon, New Mxico

The Bedded Crack Model (B(W) 10 a conetitutive model for
brittle materials. It ia based on ●ffective modulue theory and
❑akes use of a generalized Griffith criterion for crack growth. It
10 used in a solid dynamic computer code to eimulate ●trees wave
propagation and fracture in rock. A general description of the
model lo hiven and then the theoretical b~aia for it 10 preeented.
Some effecte of finite cell ●ize in numerical ●mutations are
diacueaed. The use of the BCM is illustrated in ●imulatione ok

exploeive fracture of oil shale. There is generally good agreement
betwesn the calculations and data from field ~xpcrimenta.

INTRODUCTION

Numerical almulation of otrem wave preparation ●nd fracture in
rock 10 a topic of 8reat current lntereat and Importaucel
Applications of ncunericalprograms range frnm in eitu t~chnlques for— .—
recovery of energy and ❑ineral resourcee to nuclear wenpona teatin~,
And even to the etudy of earthquake.

Numerical emulation raquiree a solid dynamic computer code
to simulate etreae wave propagat~on and a conatitutive model m

represent the material reaponae, including fracture. The Piedded
Crack ~del (BCH) la a conatltutive ❑odel that hae been developed
for brittle materlalem It in baaed on a microphyolcal picture in
which the avolution of a ●tatiotical dintrlbution of penny nhapml
cracke ia calculated.

The B(2I●ddranneo t= que~tlono. For a material :cmtaininu

penny ●lmpeci crackm:

1) how does the asrean field affect the r.rackn - th{n in, WIICII CRII

crmcka grow?
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2) how do the crack~, affect the material prapertien - that la,
what are the effective ela~tic moduli of a cracked ❑aterial?

Intrinsic to the model la the atatiatical framework used to 3e0cribe
the distribution of cracks aa a function of size.

In the next section, we describe the theoretical baaia of the
❑odel. L!e then inveatiaate some effects of finite cell size in

numerical simulation of streaa wave propagation. Finally, we

illuatra’ce the uae of the BCH in a atreaa wave code to eimulate
blaatinh in oil shale. In general, the calculaclona agree with data
from field experiments.

THEORETICAL BASIS

Griffith Criterion

The question of when a crack can grow la anewered by a

generalized Griffith criterion. The criterion aaye that a crack
w~ll grow whenever that growth reduces the potential ●nergy of the
crack nnd the material that contains it. Griffith (1920) npplied

this criterion to the case of a tn-dimensional crack (alit) in
normal tension. We have generalized Criffith’ai analysi~ to three-
dimensional (penny qhaped) cracks in the x-y plane. A crack of
radius c in normal tension will grow if

( H“’++ i’+ u+-.
Zz - Xz yz, - c

(1)

Here V la Poia Pon’a ratio, E 18 Young”a modulwz and T la the eurface
tension. ~uatlon 1 shows that in ● given atreee field, there is a
critical crack size. Cracks bigger than the criti:nl size grow,
while smaller cracka ara etablo. The equation aloo shows that the
effect of ehear atrema is to reduce the critical crack oiza.

The criterion can alao b~ ●pplied to closed cracke (normal

compression). In :hia cane, friction between the crack iacem
becomes important (McClintock and Walot., 1962). Tha criterion for
cloacd cracka ham the form

Were p la the dynamic coefficient of friction ~.+ To rapraaante a
cohesion.

Effactlv@ Elantic Modul~

n~@ effective moduli arc found frm static ●olutlono for
mlrain mm R function of applind ntraan in a randomly cracked body.
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The basic assumption IS that the total strain can be written as the
eum of the strain In the material ~f the body plus the additional

strain due to opening and sliding of the cracke. The additional
straj.n due to the cracks is linear in the applied stress if crack
interactions are ignored (Hoenig, 1979). TIIuswe can write

(3)

Here M
ijkl ‘g the modulus of the uncraciced material. fiijkl is prrt-

po?ttonal to the third ❑~ment of the crack distribution.

The crack size distribution changeg with time as the cracks

grow. The constitutive law then is

(q,
—-=C

dL ijkl (

where C = (M + fl)-~. Thu9. the

(4)

constitutive relation has the form
of a Maxwell solid with a variable relaxation time.

Crack Statistics

The initial distributio~ of cracks la aseumed to be
exponential: the number of cracks with radius greater than c ia

No exp(-c/E). ‘L%e conetnnt E is a characteristic length scale of
the initial diatributl>n and No is the total number of cracks per
unit volume. The exponential dependence is not crucial to the
model, but la convenier,t and is conelstent with data for many rockn
(Shockey et al., 1974).

At the beginning of each computntlonal cycle, we UC.C the

Crifffth criterion (equation 1 or 2) Lo determine which craclrs, [f

any, may grow. In each cell, based on the atrean, there is a
critical nize. In prinripic then, all cracka lar~er than the
critical nlze grow at thz asymptotic crmck velocity for the duration

of the cycle. Even for relnttvely Himple stress histories, thp
crlticsl crnck oize would have to bc nnved for emch cell fnr each

cyclP. Tn the t)CM, thin problem IFI overcomu hy using n two

pnrnmotc=r fit to repreacnt the dlntributinn functlnt]. Crack Rrowth
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MESH EFFECTS

The finite eize of a computational cell leads to two problems,
both associated with numerical di:fueion. First, there 10 the
diffuoion of fracture ahead of the wave. As a steep wave propagate
throug+ a cell, the cracks behind the peak cause a degradatitin of
the effective elastic moduli of the ❑aterial. Since there la only
one set of moduli fox the celi, the wave begins to propagate through
partially fractured material, leading to too ❑uch attenuation. The
problem can be characterized in terms of two time scales. One scale
is physical, representing the time for the ❑aterial to suffer sig-
nificant reduction of the effective moduli. The second scale is
ntnnerical, the transit time of the wave through the cells I=em, the
cell 13izedivided by a sound speed. When the numerical time scale
becomee comparable to the physical time scale, numerical diffusion
of the effects of fracture becomes significant.

The eecond problem is aaaociated with the use of artificial
viscosity to represent shock waves in the mesh (Wilkins, 1980). The
artificial viscoeity smeare the numerical precursor to the shock

over three or four computational cells. Because all cracka grow
with the same asymptotic apeed (Dunlaney and Brace, 1960), the shape

of the precursor plays an important role In determining the amount
of fracture ahead of the wave peak. ‘fhereal rise time of the pulse
IFJprobably much leaa than 18 simulated with aritlfical viecoeity.

In the BCM, we prevent fracture in the precursor by not
allowing crack gr~wth until the wave peak is detected. This
correeponda to ae3mning a very oharp wave front, 80 it
underestimates slightly the attenuation. This treatment reduces the
effect of the first problem, the diffueion of fracture. Whe,l the
cells are latge th( attenuation may be greatly underentiuated.

The effect of fracture in one-dimensional wave propcgstion iEI

to caune an ●xponential attenuation (Piau, 1979). However, the

attenuation coefficient 10 seneitive to ❑esh spacing if the cells
are too large. Thie IIIdemonstrated in Fig. 1, where we plot the
calculated attenuation coefficient, p, againat cell eize for ● one-

dimensional problem. For -all cello, the attelluation
asymptotically approached a constant value. The figure ●howti that a
critical point occuro when I.IAXZ1. This I- conaiatent with the

criterion for numericnl diffuaton mince (pen)-l is a time for
frnctuce and (AA/Ca) IB the trannit time of m cell. Here cm IO a
sound speed. If it 10 not poosible to uaa sufficiently ●mdl cello,

a shock fitting technique that ●llowo ●ubgrid resolution uf the wave
muet be employed.

APPLICATION TO OIL SltALE

The tlcF!hae been used with the two-dimensional etreos wave
code, YAQUI, to simulate fracture of oil shale by high ●xplosives.
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YAQUI in a finite difference “ALE” (Arbitrary Lagrangian-Euler ian)

code (Amaden, Ruppel, and Hirt 1980). ‘he ALE formulation allows
the oil shale to be followed in Lagrangian coordinate, preserving
material interface, while the high explosive gases are followed in

nearly tilerian coordinates as they rush up the borehole past the
oil shale.

The version of the BCM used for the calculations assumes that

the penny shaped cracku all lie in planee parallel to the bedding
planea. file 10 a reasonable first approximation, since the bedding

planes in oi: shale are planes of weaknesa (Youaah, 1969).
Reasonable values ace asaumed for the Initial crack density and mean
crack size. These quancitles are measurable, in principle, in the
laboratory, although utudiee at SRI (Murri et al., 1977) have shown
that it IS difficult to identify the pre-existing cracks and flawe
in direct ❑icroscopic obeervationa in oil stale. me elantic
constant~ for the rock ❑atrix in which the cracks are embedded are
taken from publiohed fits to lab~ratory data (Johnson, 1979).

The YAQUI code with the BCM conetitutive model hau been used
?0 eimulate a aeriea of oil shale bla8ting experiment that waa
conducted ill the Colony Mine near Parachute, CO. These experiments
were done in cooperation with the Colony Development Corporation and

Atlantic Richfie!d. Experiment 79.10 involved 24.7 kg of a
commercial ammonium nitrate/fuel oil explosive (ANFO) ●replaced in a
0.15 m-diameter borehole drilled vertically into the ❑ine fl~or.
The charge was 1.7 m in length and the depth to the bottom of the

Charge wa~ 3.3 ❑ . ?’hecharge vac detonated from the bottom.

Experiment 79.10 produced a crater filled with loose rubble.
The crater was auhsequently excavated and profiles of the crater
were ❑easured for comparison with the calculations. The predicted
flacture distribution 3.0 m-see afte: the firing of the detonator IF
shown in Fig. 2. A typical measured cross section for the 79.!0

crater 10 alao ohown in this figure. The predicted extent of
fracture at the free surface apreee well with the width of the
crater in the field. The code ●lso predlcta a large amount Df
fracture beneath the observed crater. HoweveR, the crater 10 not
just the region where cracks have grown, but where complete
fragmentation and tumbling of the rubble hae occurr~d am well.
Thuo, we ●xpect the observed crater to be shallowr.r, since the
broken rock at depth 10 locked in place ariddoes not acquire upward
momentum.

It IS instructive to compare the predicted fracture for
experiment 79.’10 with the observed ~rater profile for ●xperiment
79.12. lhat experiment conaioted of four charges, ●ach of which wae
approximately the @ame in nice and depth of burial am the mingle
ch~kge in experiment 79.10. The four chargee were arranged In a 3.2
❑ -quare pattern. A typical profile of the experiment 79.12 crater
(~lon~ one aide of the pattern) is nhown in Fig. 3, along with the
predicted fracture pattern, centrred on one of the chargea.
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There is a good agreement between the predicted fracture and
the observed crater from the ourface down to about the level of the
bottom of the charge. me effect of having four chargce, spaced aa
in experiment 79.12, therefore appear@ not to be an increane In the
extent of breakage, but rather in the total amount of loooe and
tumbled rubble. This probably hae to do with the occurrence of
❑ultiple shocks and the way the high prenuure explosive product

gaeen penetrate into the nhock-induced fracture network. The net
effect ie to cause the rubble-filled crater to more closely match

the extent of the fractured rock. ‘he calculation shows predicted
fracture below the explosive borehole. This fractured rock will not
be tumbled, even in a multiple borehole ●xperiment, becauee of itm
location.

Code calculations can almo be compared with field data from

acceleration, velocity, and stress gauges. Measurements of peak
vertical velocity at several locatione on the free surface were made
in a recent field experiment. That experiment was similar to

experiment 79.10, except that low-deneity r~ replaced AN’FO as the
explosive. fie predicted and observed peak velocities are plotted

against range from ground zero in Fig. 4. This figure shows good
agreement between the calculation and the observat.ions.
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Fig. 1. Attenuation c~efficient Fig. 2. Predicted iraccure and
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Flgm 3. I’redictedfracture for
experiment 79.10 and

observed crater for
experiment. 79.12.

Fig. 4.
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